1. Consider the equation

$$
\begin{equation*}
x^{\prime \prime \prime \prime}+a x=0 \tag{1}
\end{equation*}
$$

on the real line \mathbf{R}, where $a \in \mathbf{C}$ is a constant coefficient.
(a) Find all values of a (real or complex) for which all solutions of the equation are bounded in \mathbf{R}.
(Recall that a function $f: \mathbf{R} \rightarrow \mathbf{C}$ is said to be bounded of if there exists $C \geq 0$ such that $|f(t)| \leq C$ for each $t \in \mathbf{R}$.)
(b) Find all values of a (real or complex) for which there exists at least one solution x of the equation which is bounded in \mathbf{R} but does not vanish identically.

Solution:
The characteristic polynomial of the equation is

$$
\begin{equation*}
\lambda^{4}+a=0 \tag{2}
\end{equation*}
$$

Assume first that $a \neq 0$. Then equation (2) has four roots

$$
\begin{equation*}
\lambda_{1}=\alpha, \lambda_{2}=i \alpha, \lambda_{3}=i^{2} \alpha, \quad \text { and } \lambda_{4}=i^{3} \alpha \tag{3}
\end{equation*}
$$

where α is any number with $\alpha^{4}+a=0$. The general solution of (1) is

$$
\begin{equation*}
x(t)=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}+C_{3} e^{\lambda_{3} t}+C_{4} e^{\lambda_{4} t} \tag{4}
\end{equation*}
$$

If all solutions are bounded, then so must be the four functions $e^{\lambda_{j} t}, j=1,2,3,4$. This means that $\operatorname{Re} \lambda_{j}=0, j=1,2,3,4$. However, the four numbers λ_{j} form a square in the complex plane and hence cannot all lie on the imaginary line unless $\alpha=0$ in which case also $a=0$. Therefore for no $a \neq 0$ the equation can satisfy (a). To satisfy (b) at least one of the λ_{j} must be on the imaginary axis. But then $\lambda_{j}^{4}>0$ and hence $a=-\lambda_{j}^{4}<0$. Vice versa, if $a<0$ then the root $i \sqrt[4]{-a}$ is on the imaginary axis. We see that (b) is satisfied for $a \neq 0$ if and only if $a<0$.
It remains to settle the case $a=0$. In this case the general solution is

$$
\begin{equation*}
C_{1}+C_{2} t+C_{3} t^{2}+C_{4} t^{3} \tag{5}
\end{equation*}
$$

and we see that there are unbounded solutions (such as $x(t)=t$) as well as bounded solutions which do not vanish identically (such as $x(t)=1$).
Summarizing, we see that there is no $a \in \mathbf{C}$ for which all solutions are bounded, and bounded solutions which do not vanish identically exist if and only if $a \leq 0$.
2. Let $x(t)=\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$ be a solution of the system

$$
\begin{aligned}
x_{1}^{\prime} & =-2 x_{1}+x_{3}, \\
x_{2}^{\prime} & =-2 x_{2}+x_{1}, \\
x_{3}^{\prime} & =-2 x_{3}+x_{2},
\end{aligned}
$$

with $x_{1}(0)=1, x_{2}(0)=2$, and $x_{3}(0)=3$. Find $\lim _{t \rightarrow \infty} x(t)$.

Solution:

The characteristic polynomial of the system is

$$
p(\lambda)=\operatorname{det}\left(\begin{array}{rrr}
-2-\lambda & 0 & 1 \tag{6}\\
1 & -2-\lambda & 0 \\
0 & 1 & -2-\lambda
\end{array}\right)=(-2-\lambda)^{3}+1 .
$$

The equation $p(\lambda)=0$ can be rewritten as $(2+\lambda)^{3}=1$ which means that we have three roots λ_{j} given by

$$
\begin{equation*}
\lambda_{j}=-2+\zeta_{j}, \quad j=1,2,3 \tag{7}
\end{equation*}
$$

where ζ_{j} are the three roots of the equation $z^{3}=1$. The ζ_{j} all lie on the unit circle, and hence

$$
\begin{equation*}
\operatorname{Re} \lambda_{j} \leq-1, \quad j=1,2,3 \tag{8}
\end{equation*}
$$

Therefore all solutions of our system must approach zero as $t \rightarrow \infty$. This applies also to our particular solution, and hence

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=0 \tag{9}
\end{equation*}
$$

3. Let

$$
A=\left(\begin{array}{rr}
-1 & 2 \\
2 & -4
\end{array}\right)
$$

Compute the matrix $e^{t A}$.

Solution:

We note the matrix is symmetric and therefore it must become diagonal in a suitable orthogonal basis. The characteristic polynomial is $p(\lambda)=\lambda(\lambda+5)$, the eigenvalues are $\lambda_{1}=0, \lambda_{2}=-5$, the corresponding eigenvectors are respectively $x^{(1)}=\binom{2}{1}$ and $x^{(2)}=\binom{-1}{2}$. The transition matrix mapping the canonical basis to the basis $x^{(1)}, x^{(2)}$ is the matrix $P=\left(\begin{array}{rr}2 & -1 \\ 1 & 2\end{array}\right)$, its inverse is $P^{-1}=\frac{1}{5}\left(\begin{array}{rr}2 & 1 \\ -1 & 2\end{array}\right)$, and we have

$$
A=P\left(\begin{array}{rr}
0 & 0 \tag{10}\\
0 & -5
\end{array}\right) P^{-1}
$$

Therefore

$$
e^{t A}=P\left(\begin{array}{cc}
1 & 0 \tag{11}\\
0 & e^{-5 t}
\end{array}\right) P^{-1}=\frac{1}{5}\left(\begin{array}{ll}
4+e^{-5 t} & 2-2 e^{-5 t} \\
2-2 e^{-5 t} & 1+4 e^{-5 t}
\end{array}\right)
$$

